Software Systems

Block-abstraction memoization (BAM) [5] is a tech-
nique for software verification that aims towards a
modular scalable analysis for large programs.
It is based on common concepts like

e configurable program analysis (CPA) |[1| and

e caching and information reuse.

BAM is independent of the underlying analysis and
can be used in combination with

e predicate abstraction |2]

e explicit-state model checking [3]

e BDD-based software verification |4
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BAM computes new states for the state space based
on blocks, the cache, and the underlying analysis.

yes o return block abstraction
from cache

entry 1in

0
cache; compute block abstraction

with nested CPA-algorithm

o>
no
block? underlying analysis

Block-Abstraction Memoization with CEGAR

(In-Place vs. Copy-On-Write Refinement)

Karlheinz Friedberger

Basic steps of BAM:
e program is divided into blocks (functions or
loops)
e nested CPA algorithm explores and analyzes the
state space of each block
e block abstractions are cached for reuse

Figure 1: Block A is analyzed, nested blocks B and C
already finished

Figure 2: Block abstraction for state space B is reused
from cache
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the refinement

e Reducer: hide unnecessary information in states
to increase cache hit rate

o Aggressive caching: over-approximate entries
when accessing the cache

o Refinement strategies: refine one, some, or all
states along a counterexample trace

e change existing block abstractions
e remove several parts of the reached state space

Problems:
e contradicts the idea of lazy refinement by updat-
ing or deleting too many states
e overhead for recomputing previously deleted
block abstractions
e recomputation can lead to repeated counterex-
amples due to information loss

e invalidate only some reached states
e use copies of existing block abstractions
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Benefits:
e correct usage of lazy refinement by updating or
deleting only necessary parts
e all important data remains in the cache
e better for programs with more refinements
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For simple tasks with only zero or one refinements

both approaches behave identical. For difficult
tasks that need more refinements (and thus more
runtime) the copy-on-write approach shows its ben-
efit over the in-place approach.
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Figure 4: Quantile plot of BAM with predicate analy-
sis, results with less than two refinements
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Figure 5: Quantile plot of BAM with predicate analy-
sis, results with at least two refinements
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