Software Systems

Block-abstraction memoization (BAM) [5] is a tech-
nique for software verification that aims towards a
modular scalable analysis for large programs.
It is based on common concepts like

e configurable program analysis (CPA) |[1| and

e caching and information reuse.

BAM is independent of the underlying analysis and
can be used in combination with

e predicate abstraction |2]

e explicit-state model checking [3]

e BDD-based software verification |4

> >
Source Parser & CEGAR

Code CFABuilder Algorithm [7 Results
/"\

Algorithm

' BAM

CPA

Spec Spec ||Location| [Callstack| Predicate
cpA || cpa || cpa || cpa

BAM computes new states for the state space based
on blocks, the cache, and the underlying analysis.

yes o return block abstraction
from cache

entry 1in

0
cache; compute block abstraction

with nested CPA-algorithm

o>
no
block? underlying analysis

Block-Abstraction Memoization with CEGAR

(In-Place vs. Copy-On-Write Refinement)

Karlheinz Friedberger

Basic steps of BAM:
e program is divided into blocks (functions or
loops)
e nested CPA algorithm explores and analyzes the
state space of each block
e block abstractions are cached for reuse

Figure 1: Block A is analyzed, nested blocks B and C
already finished

Figure 2: Block abstraction for state space B is reused
from cache

Se’r’ror
Figure 3: Finding a (spurious) counterexample to an

error state Serror and determining a cutpoint s.,: for
the refinement

e Reducer: hide unnecessary information in states
to increase cache hit rate

o Aggressive caching: over-approximate entries
when accessing the cache

o Refinement strategies: refine one, some, or all
states along a counterexample trace

e change existing block abstractions
e remove several parts of the reached state space

Problems:
e contradicts the idea of lazy refinement by updat-
ing or deleting too many states
e overhead for recomputing previously deleted
block abstractions
e recomputation can lead to repeated counterex-
amples due to information loss

e invalidate only some reached states
e use copies of existing block abstractions

partial
COpYy

Benefits:
e correct usage of lazy refinement by updating or
deleting only necessary parts
e all important data remains in the cache
e better for programs with more refinements

LUDWIG-

MAXIMILIANS-
UNIVERSITAT
MUNCHEN

LMU

For simple tasks with only zero or one refinements

both approaches behave identical. For difficult
tasks that need more refinements (and thus more
runtime) the copy-on-write approach shows its ben-
efit over the in-place approach.

1000

|
—8— in-place

qé 100 %——0— COpy-on-write _%
> 10} J
= = - — :
-~ 1 | | |
0 250 500 750

n-th fastest result

Figure 4: Quantile plot of BAM with predicate analy-
sis, results with less than two refinements

1000

|
—8— in-place

100 - —+— copy-on-write -

> 10} .

- - -

3 — :
1 | | | |

0 500 1000 1500 2000

n-th fastest result

Figure 5: Quantile plot of BAM with predicate analy-
sis, results with at least two refinements

[1] D. Beyer, T. A. Henzinger, and G. Théoduloz. Con-

figurable software verification: Concretizing the conver-
gence of model checking and program analysis. In Proc.
CAV, LNCS 4590, pages 504—-518. Springer, 2007.

2] D. Beyer, M. E. Keremoglu, and P. Wendler. Predi-
cate abstraction with adjustable-block encoding. In Proc.
FMCAD, pages 189—-197. FMCAD, 2010.

3] D. Beyer and S. Lowe. Explicit-state software model
checking based on CEGAR and interpolation. In Proc.
FASE, LNCS 7793, pages 146—162. Springer, 2013.

4] D. Beyer and A. Stahlbauer. BDD-based software
model checking with CPACHECKER. In Proc. MEMIC'S,
LNCS 7721, pages 1-11. Springer, 2013.

5] K. Friedberger. CPA-BAM: Block-abstraction memoiza-
tion with value analysis and predicate analysis (competi-
tion contribution). In Proc. TACAS, LNCS 9636, pages
912-915. Springer, 2016.

