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Introduction and Background

Block-Abstraction Memoization

1. Parallel Block-Abstraction Memoization

2. Refinement for Block-Abstraction Memoization
3. Interprocedural Block-Abstraction Memoization

Conclusion
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Computer Program

int main() {
int a = foo();
int b = bar(a);

if (a = b) error();

Specification
’ LTL(G ! call(error())) ‘

!
Z

Verification
Tool

& i.e., specification is satisfied
— proof

% FALSE

i.e., bug found
— counterexample
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Fixed-point algorithm for exploring reachable abstract states

termination based on coverage

Operators defined for abstract domain:
transfer. successor computation
merge: combination of two abstract states

stop: coverage of abstract states

domain abstract state
location I3

callstack [f1, f2]

explicit value {a =3,b="5}
predicate (l<4Am=5)Vn#0
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Challenge:
X computation of the complete abstract state space is expensive

X analysis is not modular

Possible solution: block summaries
divide and conquer strategy

reuse intermediate results

Our contribution:
independence of domain

modular design and implementation



Block Abstraction

> input-output relation for a block
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Examples for several domains:
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callstack [f1, f2] [f1, f2]

explicit value {a =3,b="5} {a=4,b=06,c=9}
predicate (<4Am=5)Vvn#0 (I<4Am=6)Vn>I+1
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Examples for several domains:

domain abstract input state abstract output state
location I3 l5

callstack [f1, f2] [f1, f2]

explicit value {a =3,b="5} {a=4,b=06,c=9}
predicate (<4Am=5)Vvn#0 (I<4Am=6)Vn>I+1
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Challenges with an efficient parallel algorithm:
X program analysis strictly sequential (per block!)

X control-flow dependencies between block abstractions



Challenges with an efficient parallel algorithm:
X program analysis strictly sequential (per block!)
X control-flow dependencies between block abstractions

Our contribution: Parallel Block-Abstraction Memoization
combination of the existing CPA concept and a parallel application
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Research questions
@ 1 processing unit: overhead of the parallel approach

(?) performance with more processing units

Configuration (CPAchecker r28809)
explicit-value analysis (VA) with BAM or with ParallelBAM

Environment and tasks
Intel Xeon E3-1230 v5 with 3.40 GHz and 4 physical cores
limitation of 15 GB RAM and 15 min of runtime
5400 tasks from SV benchmark suite
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response time (s)

1000
100

1000
100

T
= VA-BAM
—o— VA-ParallelBAM (1 thread)

500 1000 1500

n-th fastest result (programs with proofs)
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| |
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Evaluation: More Processing Units

= 1000 ‘

g 100 w12 e 448 (#threads) i
210
8 M ]
&1l ‘
o 0 1000 2000 3000

n-th fastest correct result

Karlheinz Friedberger LMU Munich, Germany 13 /32



Evaluation: More Processing Units

= 1000 ‘ -
g 100 w12 e 448 (#threads) 7
2 10
2 M ]
51 e ‘
3] 0 1000 2000 3000
n-th fastest correct result
0
o 1000 ¢ ; ;
£ i i
g /‘gﬁ/ﬁ%
3 i :
§_ 10 ?:l_ e | L E
$ 2600 2800 3000

n-th fastest correct result
Karlheinz Friedberger LMU Munich, Germany 13 /32



Counterexample-guided Abstraction Refinement (CEGAR)
granularity of the analysis

domain-independent approach
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Counterexample-guided Abstraction Refinement (CEGAR)
granularity of the analysis

domain-independent approach




CEGAR with Lazy Refinement (with BAM)
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Missing information after the refinement

7 re-compute nested blocks or take partial results from cache?

Missing information after the analysis
X export of incomplete data (witnesses, explored state space, statistics)

X no guarantee for progress in the analysis

Our contribution: Copy-on-Write refinement for BAM
no deletion of computed block abstractions
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Research questions
(?) different runtime for the analysis?

(?) different number of refinements?



Research questions
(?) different runtime for the analysis?
(?) different number of refinements?

Configuration (CPAcHECKER r29066)
BAM with predicate analysis (PA) and BAM with explicit-value analysis (VA)

in-place vs. copy-on-write refinement

Environment and tasks
Intel Xeon E3-1230 v5 with 3.40 GHz and 4 physical cores
limitation of 15 GB RAM and 15 min of runtime
5400 tasks from SV benchmark suite
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Challenges with (intraprocedural) block abstractions:
X dependent on program context

X missing support for recursive procedures

Our contribution: Interprocedural Block-Abstraction Memoization
block abstractions are (mostly) independent of the calling context

fixed-point algorithm for soundly analyzing recursive procedures

based on Intraprocedural Block-Abstraction Memoization



Analysis of Recursive Procedures

Sstart,main

A
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Analysis of Recursive Procedures (Interprocedural BAM)

Sstart,main ettt Sstart,rec ) Sstart,rec

cache miss
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Analysis of Recursive Procedures (Interprocedural BAM)

Sstartmain ettt Sstart,rec ------- Sstart,rec
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Research questions
(?) effectiveness and efficiency against Intraprocedural BAM

(?) effectiveness and efficiency against other state-of-the-art tools



Research questions
(?) effectiveness and efficiency against Intraprocedural BAM

(?) effectiveness and efficiency against other state-of-the-art tools

Tools and configurations
CPAchecker v1.9 with different analyses and different domains

several participants of SV-COMP’'20

Environment and tasks
Intel Xeon E3-1230 v5 with 3.40 GHz and 4 physical cores

limitation of 15 GB RAM and 15 min of runtime
>1000 non-recursive tasks from SV benchmark suite
>100 recursive tasks from SV benchmark suite
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B Proofs andIBugs found with BAM Interprocedural
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Verifier CPU time (s) Proofs Bugs
CBMC 662 32 47
CPACHECKER (Value+Predicate) | 2180 37 46
DIVINE 1190 32 42
EsBMC 041 33 47
MAaP2CHECK 23600 34 37
PINAKA 237 31 31
SYMBIOTIC 138 33 45
UAUTOMIZER 2160 41 37
VERIABS 7630 41 46




Block Abstraction Memoization

domain-independent approach for software verification

Parallel Block Abstraction Memoization

simple and efficient approach

Refinement for Block Abstraction Memoization

insights into refinement in the context of BAM

Interprocedural Block Abstraction Memoization
support for recursive procedures

competitive performance



Block Abstraction Memoization
combine with backward analysis for bi-directional state-space exploration

more domain

Parallel Block Abstraction Memoization

multiple processes (machines) instead of multiple threads

Interprocedural Block Abstraction Memoization

pointer handling and heap manipulation is currently unsolved
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Questions?
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Example of an Analysis

void main(void) {
uint a = nondet();
uint b = nondet();
uint s = sum(a, b);
if (s!=a+b){
error ();
}

}

uint sum(uint n, uint m) {
if (n==0){
return m;
} else {
uint tmp =sum(n — 1, m + 1);
return tmp;
}
}

a = nondet()

Bmain

return from sum

Bsum
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Example of an Analysis

Brain

a = nondet()

Bisum

W

s = a+b]
return from summ

control-flow automaton
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Example of an Analysis

Bmain

Bsum
a = nondet()

et g

s = art] TS tmp

[main, sum]
true

@ reduce
[sum, sum]
true

return from sum

control-flow automaton

uonoeISqe
>p0|q Ajdde

ssiw ayoed

e11

X

[main, sum]
ret =a+b

Fixed-point algorithm
(first iteration)

€13

abstract reachability graph
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Example of an Analysis

Bmain
a = nondet()

Bsum

et g

s = a+b]

TS tmp

[sum]
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