Effcient Software Model Checking
with
Block-Abstraction Memoization

Karlheinz Friedberger

LMU Munich, Germany

3. November 2021

(Software Systems)

LMU Munich, German y 1/32

Introduction and Background

Block-Abstraction Memoization

1. Parallel Block-Abstraction Memoization

2. Refinement for Block-Abstraction Memoization
3. Interprocedural Block-Abstraction Memoization

Conclusion

Software Quality
0§t | Oakaw shavcl {/.7_7“ F.03p ;7 oL

/oo ; s\vg.rﬂ = oaham ./ 9.087 §YE 09T e
1370, (030 MP -me ?ﬁmﬁ*ﬁ 74/5 725057 ()
@3y PRO.> 2. 1doyrlyiS

CCawdk 23067ew
Bdoust goni Lo 18gs {mﬂ uid sT_uJ Jesd”
{m PR . R e e R _um

e

1ree >T¢r+“-€j CO.Slhe Tcl Sl.hz L‘\cck)
1528 boted [Nults ‘P&cljﬁr (T_s‘i‘

1S4y @elﬂwﬁ?o ?cuml

- Mo LR 'f“Q'l.qu\

Tleatin s
fg"’h W sw

0o oLl J g
Computer's log of Mark Il Aiken Relay Calculator, Grace Hopper, 1947

.r_q; o-{‘ .L':ucl Le.im‘ {Mlnolu

Karlheinz Friedberger LMU Munich, Germany

/ 32

Computer Program

int main() {
int a = foo();
int b = bar(a);

if (a = b) error();

Specification
’ LTL(G ! call(error())) ‘

!
Z

Verification
Tool

& i.e., specification is satisfied
— proof

% FALSE

i.e., bug found
— counterexample

Fixed-point algorithm for exploring reachable abstract states

termination based on coverage

Fixed-point algorithm for exploring reachable abstract states

termination based on coverage

Operators defined for abstract domain:
transfer. successor computation
merge: combination of two abstract states

stop: coverage of abstract states

Fixed-point algorithm for exploring reachable abstract states

termination based on coverage

Operators defined for abstract domain:
transfer. successor computation
merge: combination of two abstract states

stop: coverage of abstract states

domain abstract state
location I3

callstack [f1, f2]

explicit value {a =3,b="5}
predicate (l<4Am=5)Vn#0

Challenge:
X computation of the complete abstract state space is expensive

X analysis is not modular

Challenge:
X computation of the complete abstract state space is expensive

X analysis is not modular

Possible solution: block summaries
divide and conquer strategy

reuse intermediate results

Challenge:
X computation of the complete abstract state space is expensive

X analysis is not modular

Possible solution: block summaries
divide and conquer strategy

reuse intermediate results

Our contribution:
independence of domain

modular design and implementation

Block Abstraction

> input-output relation for a block

Karlheinz Friedberger LMU Munich, Germany 7 /32

input-output relation for a block

Examples for several domains:

domain abstract input state abstract output state
location I3 l5

callstack [f1, f2] [f1, f2]

explicit value {a =3,b="5} {a=4,b=06,c=9}
predicate (<4Am=5)Vvn#0 (I<4Am=6)Vn>I+1

input-output relation for a block

Examples for several domains:

domain abstract input state abstract output state
location I3 l5

callstack [f1, f2] [f1, f2]

explicit value {a =3,b="5} {a=4,b=06,c=9}
predicate (<4Am=5)Vvn#0 (I<4Am=6)Vn>I+1

Karlheinz Friedberger

State-Space Exploration

(A

LMU Munich, Germany

- ?
time

State-Space Exploration

(A

LMU Munich, Germany

- ?
time

32

Karlheinz Friedberger

State-Space Exploration

(A

Block-Abstraction Memoization

—
time

11
(B) (¢) (Db)
gl 41 4 l®>

LMU Munich, Germany

32

State-Space Exploration

Karlheinz Friedberger

(A),

time,

Block-Abstraction Memoization

1

(B) C) (Db)
A e e
time

LMU Munich, Germany

Challenges with an efficient parallel algorithm:
X program analysis strictly sequential (per block!)

X control-flow dependencies between block abstractions

Challenges with an efficient parallel algorithm:
X program analysis strictly sequential (per block!)
X control-flow dependencies between block abstractions

Our contribution: Parallel Block-Abstraction Memoization
combination of the existing CPA concept and a parallel application

Research questions
@ 1 processing unit: overhead of the parallel approach

(?) performance with more processing units

Research questions
@ 1 processing unit: overhead of the parallel approach

(?) performance with more processing units

Configuration (CPAchecker r28809)
explicit-value analysis (VA) with BAM or with ParallelBAM

Environment and tasks
Intel Xeon E3-1230 v5 with 3.40 GHz and 4 physical cores
limitation of 15 GB RAM and 15 min of runtime
5400 tasks from SV benchmark suite

response time (s)

response time (s)

1000
100

1000
100

T
= VA-BAM
—o— VA-ParallelBAM (1 thread)

500 1000 1500

n-th fastest result (programs with proofs)

-=—VA-BAM
—o—VA-ParallelBAM (1 thread)

| |
500 1000
n-th fastest result (programs with property violation)

Evaluation: More Processing Units

= 1000 ‘

g 100 w12 e 448 (#threads) i
210
8 M]
&1l ‘
o 0 1000 2000 3000

n-th fastest correct result

Karlheinz Friedberger LMU Munich, Germany 13 /32

Evaluation: More Processing Units

= 1000 ‘ -
g 100 w12 e 448 (#threads) 7
2 10
2 M]
51 e ‘
3] 0 1000 2000 3000
n-th fastest correct result
0
o 1000 ¢ ; ;
£ i i
g /‘gﬁ/ﬁ%
3 i :
§_ 10 ?:l_ e | L E
$ 2600 2800 3000

n-th fastest correct result
Karlheinz Friedberger LMU Munich, Germany 13 /32

Counterexample-guided Abstraction Refinement (CEGAR)
granularity of the analysis

domain-independent approach

Counterexample-guided Abstraction Refinement (CEGAR)
granularity of the analysis

domain-independent approach

Sstart

SError

Counterexample-guided Abstraction Refinement (CEGAR)
granularity of the analysis

domain-independent approach

Sstart

Scut

SError

Counterexample-guided Abstraction Refinement (CEGAR)
granularity of the analysis

domain-independent approach

CEGAR with Lazy Refinement (with BAM)

Karlheinz Friedberger LMU Munich, German y 15 / 32

Sstart,A

Sstart,A

SError

Sstart,A

SError

Karlheinz Friedberger LMU Munich, Germany

Missing information after the refinement

7 re-compute nested blocks or take partial results from cache?

Missing information after the refinement

7 re-compute nested blocks or take partial results from cache?

Missing information after the analysis
X export of incomplete data (witnesses, explored state space, statistics)

X no guarantee for progress in the analysis

Missing information after the refinement

7 re-compute nested blocks or take partial results from cache?

Missing information after the analysis
X export of incomplete data (witnesses, explored state space, statistics)

X no guarantee for progress in the analysis

Our contribution: Copy-on-Write refinement for BAM
no deletion of computed block abstractions

Sstart,A

Sstart,A

SError

Sstart,A

SError

Research questions
(?) different runtime for the analysis?

(?) different number of refinements?

Research questions
(?) different runtime for the analysis?
(?) different number of refinements?

Configuration (CPAcHECKER r29066)
BAM with predicate analysis (PA) and BAM with explicit-value analysis (VA)

in-place vs. copy-on-write refinement

Environment and tasks
Intel Xeon E3-1230 v5 with 3.40 GHz and 4 physical cores
limitation of 15 GB RAM and 15 min of runtime
5400 tasks from SV benchmark suite

CPU time (s)

1000

100

—_
=}

-=—BAM with PA (in- place)
—— BAM with PA
—— BAM with VA
——BAM with VA (copy-on-write)

(i
(
(i
(

copy-on-write)
in-place)

Karlheinz Friedberger

500

1000 1500
n-th fastest result

LMU Munich, Germany

2000

2500

19

32

1000

100

copy-on-write

10

++

i
v |
+H+ 4
#4
+
+

Ll
copy-on-write

—_

10 100
in-place

1000

1000

100

10

—_
—_

10 100
in-place

1000

Number of refinements for (1) predicate analysis and (2) explicit-value analysis

Karlheinz Friedberger

LMU Munich, Germany

Challenges with (intraprocedural) block abstractions:
X dependent on program context

X missing support for recursive procedures

Challenges with (intraprocedural) block abstractions:
X dependent on program context

X missing support for recursive procedures

Our contribution: Interprocedural Block-Abstraction Memoization
block abstractions are (mostly) independent of the calling context

fixed-point algorithm for soundly analyzing recursive procedures

Challenges with (intraprocedural) block abstractions:
X dependent on program context

X missing support for recursive procedures

Our contribution: Interprocedural Block-Abstraction Memoization
block abstractions are (mostly) independent of the calling context

fixed-point algorithm for soundly analyzing recursive procedures

based on Intraprocedural Block-Abstraction Memoization

Analysis of Recursive Procedures

Sstart,main

A

Karlheinz Friedberger LMU Munich, Germany 22 /32

Sstart,main et Sstart,rec

Sstart,main ettt Sstart,rec JPEEERY Sstart,rec

Sstart,main ettt Sstart,rec JREERLY Sstart,rec et) Sstart,rec

Sstart,main ettt Sstart,rec) Sstart,rec

cache miss

Sstart,main ettt Sstart,rec) Sstart,rec

cache miss

Analysis of Recursive Procedures (Interprocedural BAM)

Sstart,main ettt Sstart,rec) Sstart,rec

cache miss

Karlheinz Friedberger LMU Munich, Germany 23 /32

Sstart,main

Karlheinz Friedberger

LMU Munich, Germany

Sstart,rec

w

w

N

Sstart,main

Karlheinz Friedberger

LMU Munich, Germany

Sstart,rec

32

Analysis of Recursive Procedures (Interprocedural BAM)

Sstartmain ettt Sstart,rec ------- Sstart,rec

Karlheinz Friedberger LMU Munich, Germany 23 /32

Research questions
(?) effectiveness and efficiency against Intraprocedural BAM

(?) effectiveness and efficiency against other state-of-the-art tools

Research questions
(?) effectiveness and efficiency against Intraprocedural BAM

(?) effectiveness and efficiency against other state-of-the-art tools

Tools and configurations
CPAchecker v1.9 with different analyses and different domains

several participants of SV-COMP’'20

Environment and tasks
Intel Xeon E3-1230 v5 with 3.40 GHz and 4 physical cores

limitation of 15 GB RAM and 15 min of runtime
>1000 non-recursive tasks from SV benchmark suite
>100 recursive tasks from SV benchmark suite

600 :
400 + :

200 :

#Correct Results

Value Predicate Interval Value+-Predicate

Non-recursive Tasks

B Proofs and[JBugs found without BAM
B Proofs andJBugs found with BAM Intraprocedural
B Proofs andIBugs found with BAM Interprocedural

Karlheinz Friedberger LMU Munich, Germany 25 /32

60 |- :
40 | a
20 :

#Correct Results

Value Predicate Interval Value+Predicate

Recursive Tasks

B Proofs and[JBugs found without BAM
B Proofs andJBugs found with BAM Intraprocedural
B Proofs andBugs found with BAM Interprocedural

Karlheinz Friedberger LMU Munich, Germany

Verifier CPU time (s) Proofs Bugs
CBMC 662 32 47
CPACHECKER (Value+Predicate) | 2180 37 46
DIVINE 1190 32 42
EsBMC 041 33 47
MAaP2CHECK 23600 34 37
PINAKA 237 31 31
SYMBIOTIC 138 33 45
UAUTOMIZER 2160 41 37
VERIABS 7630 41 46

Block Abstraction Memoization

domain-independent approach for software verification

Parallel Block Abstraction Memoization

simple and efficient approach

Refinement for Block Abstraction Memoization

insights into refinement in the context of BAM

Interprocedural Block Abstraction Memoization
support for recursive procedures

competitive performance

Block Abstraction Memoization
combine with backward analysis for bi-directional state-space exploration

more domain

Parallel Block Abstraction Memoization

multiple processes (machines) instead of multiple threads

Interprocedural Block Abstraction Memoization

pointer handling and heap manipulation is currently unsolved

References and Data Availability

» Domain-Independent Multi-threaded Software Model Checking
Dirk Beyer and Karlheinz Friedberger, ASE 2018
Supplement: https://wuw.sosy-lab.org/research/bam-parallel/

» In-Place vs. Copy-on-Write CEGAR Refinement for Block Summarization
with Caching

Dirk Beyer and Karlheinz Friedberger, 1ISoLA 2018
Supplement: https://wuw.sosy-lab.org/research/bam-cow-refinement/

» Domain-Independent Interprocedural Program Analysis
using Block-Abstraction Memoization
Dirk Beyer and Karlheinz Friedberger, FSE 2020
Reproduction Package: https://doi.org/10.5281/zenodo . 4024268

Karlheinz Friedberger LMU Munich, Germany 30 /32

https://www.sosy-lab.org/research/pub/2018-ASE.Domain-Independent_Multi-threaded_Software_Model_Checking.pdf
https://www.sosy-lab.org/research/bam-parallel/
https://www.sosy-lab.org/research/pub/2018-ISoLA.In-Place_vs_Copy-on-Write_CEGAR_Refinement_for_Block_Summarization_with_Caching.pdf
https://www.sosy-lab.org/research/pub/2018-ISoLA.In-Place_vs_Copy-on-Write_CEGAR_Refinement_for_Block_Summarization_with_Caching.pdf
https://www.sosy-lab.org/research/bam-cow-refinement/
https://www.sosy-lab.org/research/pub/2020-FSE.Domain-Independent_Interprocedural_Program_Analysis_using_Block-Abstraction_Memoization.pdf
https://www.sosy-lab.org/research/pub/2020-FSE.Domain-Independent_Interprocedural_Program_Analysis_using_Block-Abstraction_Memoization.pdf
https://doi.org/10.5281/zenodo.4024268

CPAcHECKER - The Configurable Software-Verification Platform

BencHEXEC - Reliable Benchmarking and Resource Measurement

JavASMT - Unified Java API for SMT Solvers

SV-BeEncHMARKS - Collection of Verification Tasks

https://cpachecker.sosy-lab.org
https://github.com/sosy-lab/benchexec
https://github.com/sosy-lab/java-smt
https://github.com/sosy-lab/sv-benchmarks

Questions?

Source Parser &
Code | 7| CFA Builde |

1

CEGAR :
Algorithm Rl

Spec %

. CPA ||
1 Algorithm
- 2 I 2 3
Spec Location | | Callstack | [Predicate
CPA CPA CPA CPA

Source
Code

Spec %

—

Parser & CEGAR
CFA Builder| | Algorithm 7 | Results
1
. CPA ||
1 Algorithm
l -wait for
‘ nested analysis
BAM
CPA
¥ 2 | 2 ¥
Spec Location | | Callstack | |Predicate
CPA CPA CPA CPA

Source Parser & CEGAR :
Code % CFA Builder_> Algorithm REsTfEs
T
[Parallel BAM ;“‘
1 Algorithm
TILILLL
CPA i enqueue missing
Algorithm | : block abstraction
1
) Parallel BAM
N instances CPA
- ¥ | ¥ N2
Spec \| Spec Location | | Callstack Value
7| CPA CPA CPA CPA

Example of an Analysis

void main(void) {
uint a = nondet();
uint b = nondet();
uint s = sum(a, b);
if (s!=a+b){
error ();
}

}

uint sum(uint n, uint m) {
if (n==0){
return m;
} else {
uint tmp =sum(n — 1, m + 1);
return tmp;
}
}

a = nondet()

Bmain

return from sum

Bsum

Karlheinz Friedberger

LMU Munich, Germany

Example of an Analysis

Brain

a = nondet()

Bisum

W

s = a+b]
return from summ

control-flow automaton

Karlheinz Friedberger LMU Munich, Germany

Example of an Analysis

Bmain

Bsum
a = nondet()

et g

s = art] TS tmp

[main, sum]
true

@ reduce
[sum, sum]
true

return from sum

control-flow automaton

uonoeISqe
>p0|q Ajdde

ssiw ayoed

e11

X

[main, sum]
ret =a+b

Fixed-point algorithm
(first iteration)

€13

abstract reachability graph

Karlheinz Friedberger LMU Munich, Germany

Example of an Analysis

Bmain
a = nondet()

Bsum

et g

s = a+b]

TS tmp

[sum]
@ eturn from sum ret = e trp T L
' v 3
] S0
§ / : i PH:
control-flow automaton 2 o ' g gig
By N ' g 3
2 > [} 518 S
g [i 2el il 7
E] a
3\ es2 es
e3s S expand
(A% [sum, sum] rebuild [sum]
[main, sum] S ret =m+n ret =mp +np
ret =a+b S/

Fixed-point algorithm oot
(second iteration)

abstract reachability graph

Karlheinz Friedberger LMU Munich, Germany

	Outline
	Introduction and Background
	Block-Abstraction Memoization
	1. Parallel Block-Abstraction Memoization
	2. Refinement for Block-Abstraction Memoization
	3. Interprocedural Block-Abstraction Memoization
	Conclusion
	References
	Appendix
	Backup

